

PERHITUNGAN STRUKTUR BANGUNAN SD MUHAMMADIYAH 1 SAMARINDA KALIMANTAN TIMUR

BUILDING STRUCTURE CALCULATIONS OF MUHAMMADIYAH 1 ELEMENTARY SCHOOL SAMARINDA IN EAST KALIMANTAN

Farida Afifah Meilani CA¹⁾, Tumingan ^{2)*}, Pramono ³⁾

afifah_farida@gmail.com¹⁾, tumingan@yahoo.com²⁾, pramono@yahoo.com³⁾

1,2,3 Jurusan Teknik Sipil, Politeknik Negeri Samarinda 1,2,3 Jl. Cipto Mangunkusumo Kampus Gunung Panjang, Kota Samarinda 75131, Kalimantan Timur

Korespondensi Naskah: Tumingan

INTISARI

Tujuan dari penulisan tugas akhir ini adalah untuk menghitung elemen struktur meliputi pelat, balok, dan kolom gedung SD Muhammadiyah 1 Samarinda. Perhitungan struktur beton dimulai dengan menghitung pembebanan lalu dimasukkan ke dalam SAP 2000 v14 dan didapatkan gaya-gaya dalam berupa momen (M), gaya lintang (D) dan gaya normal (N). Kemudian dihitung menggunakan metode SNI 03-2847-2002 dan mengacu pada PPIUG 1983. Dari perhitungan tersebut didapatkan hasil momen kolom terbesar yaitu 49403,24 kg.cm dengan jumlah tulangan 6 Ø12, momen balok sebesar 1506087,32 kg.cm dengan jumlah tulangan lapangan 5 Ø12 dan tumpuan 8 Ø12 dengan jarak tulangan geser pada tumpuan Ø10 - 150 mm dan tulangan geser lapangan lapangan Ø12 - 300 mm. Pada pelat lantai didapat jarak tulangan arah x Ø12 - 150 mm, tulangan arah y Ø12 – 200 mm.

Kata kunci: SAP 2000 v14, SNI 03-2847-2002, Struktur beton bertulang

ABSTRACT

The purpose of this study is to calculate the structure element such as plates, beams and columns at Muhammadiyah 1 Elementary School, Samarinda. Calculation of concrete structures begins with calculating the loading and input them into the SAP2000 v14 and obtained forces in the form of the moment (M), shear force (D) and the normal force (N). And then its would be calculated based on SNI 03-2847-2002 and refers PPIUG 1983. From these calculations showed that column moment is 49403.24 kg.cm with 6 \emptyset 12 reinforcement, the beam moment is 1,506,087.32 kg.cm with 5 \emptyset 12 for field reinforcement; 8 \emptyset 12 for focus reinforcement and \emptyset 10 - 150 mm for shear reinforcement. And those for slab reinforcements at x directions are \emptyset 12 - 150 mm and slab reinforcements at y direction are \emptyset 12 - 200 mm.

Keyword: Reinforce concrete structure, SAP 2000 v14, SNI 03-2847-2002

PENDAHULUAN

Bangunan adalah struktur buatan manusia yang terdiri atas dinding dan atap yang didirikan secara permanen di suatu tempat.

Bangunan juga biasa disebut dengan rumah dan gedung, yaitu segala sarana, prasarana atau infrastruktur dalam kebudayaan atau kehidupan manusia dalam membangun

peradabannya. Bangunan memiliki beragam bentuk, ukuran, dan fungsi, serta telah mengalami penyesuaian sepanjang sejarah yang disebabkan oleh beberapa faktor, seperti bahan bangunan, kondisi cuaca, harga, kondisi tanah, dan alasan estetika. perencanaan Dalam sebuah gedung, khususnya gedung bertingkat memperhatikan beberapa kriteria yang matang dari unsur kekuatan, kenyamanan, serta aspek ekonomisnya. Kenyamanan yang diinginkan membutuhkan tingkat ketelitian keamanan yang tinggi perhitungan konstruksinya. Faktor yang kali mempengaruhi kekuatan konstruksi adalah beban hidup, mati, beban angin, dan beban gempa. Keadaan atau lokasi pembangunan gedung mempengaruhi bertingkat akan pula kekuatan gempa yang ditimbulkan nantinya akan berdampak kepada bangunan itu sendiri. Untuk memudahkan perhitungan struktur digunakan aplikasi SAP 2000 versi 14 untuk menghitung gaya-gaya yang bekerja didalam gedung.

Gedung SD Muhammadiyah 1 Samarinda merupakan bangunan gedung berlantai empat dan memiliki basement dengan luas gedung ± 661,25 m² yang berlokasi di Jl. Brantas No.47, Kalimantan Timur. Gedung SD ini memiliki 20 ruang belajar, dan 2 ruang Laboratorium. Struktur utama gedung ini adalah struktur rangka beton bertulang dan rangka atap baja ringan.

LANDASAN TEORI

Pengertian Umum

Bangunan adalah sebuah struktur yang memiliki tumpuan dan diberi beban dari atas yaitu beban angin, mati dan hidup. Dan beban tersebut memiliki kombinasi pembebanan dan koefisien penjumlahan yang mengacu pada PPIUG 1987 dan SNI 03-2847-2002.

Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah menurut Ariestadi (2008).

Tumpuan

Tumpuan merupakan tempat perletakan atau dukungan bagi konstruksi dalam meneruskan gaya-gaya yang bekerja ke pondasi. Jenis tumpuan yaitu tumpuan jepit, sendi,dan rol.

Pembebanan

Pengertian pembebanan menurut Peraturan Pembebanan Indonesia untuk Gedung (PPIUG) 1983 adalah sebagai berikut:

Beban mati

Beban mati adalah beban dengan besar yang konstan dan berada pada posisi yang sama setiap saat. Beban ini terdiri dari berat sendiri struktur dan beban lain yang melekat pada struktur secara permanen.

Beban hidup

Beban hidup adalah beban yang besar dan posisinya dapat berubah-ubah. Termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah, mesinmesin serta peralatan yang dapat dipindahkan dan tidak bersifat permanen, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut. Khusus pada atap yang termasuk beban hidup yaitu yang berasal dari air hujan, baik akibat genangan maupun akibat tekanan jatuh butiran air.

Beban angin

Beban angin ialah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih dalam tekanan udara.

Faktor Keamanan Faktor beban

Struktur dan komponen struktur harus direncanakan hingga semua penampang mempunyai kuat rencana minimum sama dengan kuat perlu, yang dihitung berdasarkan kombinasi beban dan gaya terfaktor yang sesuai dengan ketentuan tata cara. Keamanan untuk beban-beban tersebut dapat dibuat secara kombinasi, dengan ketentuan yang ditampilkan pada Tabel 1 berikut.

Tabel 1. Kombinasi pembebanan

No	Kombinasi Beban
1	U = 1,4 DL
2	U = 1,2 DL + 1,6 LL
3	U = 1.2 DL + 1.0 LL + 1.6 WL

Untuk beban hidup (L) diambil dari peraturan muatan Indonesia, yang nilainya bebannya disesuaikan dengan guna dari ruangan atau lantai dalam bangunan. Untuk

beban mati (D) nilai pembebanan diambil dari persamaan – persamaan pada posisi beban terpusat atau beban titik (P) dan posisi terbagi rata (q) untuk semua komponen struktur. Untuk beban angin (W) nilainya diambil dari dimensi bangunan yang dikalikan dengan koefisien yang telah ditentukan didalam peraturan muatan Indonesia.

Faktor reduksi kekuatan

Menurut SNI-03-2847-2002 Tata Cara Perencanaan Struktur Beton untuk Bangunan Gedung, Kuat rencana suatu komponen struktur, sambungannya dengan komponen struktur lain dan penampangnya, sehubungan dengan perilaku lentur, beban normal, geser dan torsi harus diambil sebagai hasil kuat nominal, yang dihitung berdasarkan ketentuan dan asumsi dari tata cara ini, dengan suatu faktor reduksi kekuatan (\$\phi\$). Faktor reduksi tersebut ditampilkan dalam Tabel 2 berikut:

Tabel 2. Faktor reduksi

_ 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
Untuk beban lentur	$\theta = 0.80$						
Untuk gaya aksial tarik dan	$\theta = 0.80$						
aksial tarik dengan lentur							
Untuk gaya aksial tekan dan	$\theta = 0.65$						
aksial tekan dengan lentur							
Untuk gaya geser dan torsi	$\theta = 0.75$						

Analisa dengan SAP 2000 versi 14

SAP 2000 Versi 14 merupakan salah satu program analisis struktur yang lengkap namun sangat mudah untuk dioperasikan. Prinsip utama penggunaan program ini pemodelan struktur, eksekusi adalah analisis, dan pemeriksaan atau optimasi desain; yang semuanya dilakukan dalam satu langkah atau satu tampilan. Tampilan berupa model time secara real sehingga memudahkan pengguna untuk melakukan pemodelan secara menyeluruh dalam waktu singkat namun dengan hasil yang tepat.

Output yang dihasilkan juga dapat ditampilkan sesuai dengan kebutuhan baik berupa model struktur, grafik, maupun spreadsheet. Semuanya dapat disesuaikan dengan kebutuhan untuk penyusunan laporan analisis dan desain.

Perhitungan Dasar Beton Bertulang

Beton bertulangmenurut SNI 03-2847-2002 pasal 3.13 beton yang ditulangi

dengan dengan luas dan jumlah tulangan yang tidak kurang dari nilai minimum, yang diisyaratkan dengan atau tanpa prategang, dan direncanakan berdasarkan asumsi bahwa kedua material bekerja bersama-sama dalam menahan gaya dan bekerja. Sifat utama dari baja tulangan , yaitu sangat kuat terhadap beban tarik maupun beban tekan

Penutup beton bertulang

Ketentuan mengenai tebal penutup beton ditampilkan pada Tabel 3.

Tabel 3. Tebal penutup beton

	Kondisi							
Balok	Berhubungan langsung dengan cuaca dan tanah	Tidak berhubungan langsung dengan cuaca dan tanah						
Serhubungan langson dengan cuaca dan tans		D 44 dan 56 = 40 mm Ø < D 36 = 20 mm						
Balok		Tulangan utama, pengikat, sengkang lilitan spiral diambil sebesar = 40 mm						
Kolom		Tulangan utama, pengikat, sengkang Hilitan spiral diambil sebesar = 40 mm						

Batasan Spasi Tulangan

Dalam perencanaan pelat, balok, dan kolom dalam pemasangan tulangan memiliki jarak maksimum dalam pemasangannya dan menurut SNI 03-2847-2002.

a. TulanganPokok

Jarak maksimum tulangan pokok telah dibahas pada pasal 9.6 yaitu jarak maksimum tulangan pokok tidak boleh kurang dari 25 mm dan bila tulangan terdiri lebih dari 2 lapis dan jarak antar lapis harus lebih dari 25 mm dan harus sejajar dengan lapis pertama.

b. Tulangan Geser

Jarak minimum sengkang dan sengkang ikat tidak boleh melebihi 16 kali diameter tulangan longitudinal, 48 kali diameter batang atau tulangan sengkang ikat, dan tidak boleh lebih dari setengah kali tinggi efektif. Spasi maksimum dari tulangan-tulangan sisi ini tidak boleh melebihi nilai terkecil dari d/6, 300 mm, dan 1000 Ab/(d - 750).

c. Tulangan Puntir

Tulangan longitudinal yang dibutuhkan untuk menahan punter harus memiliki diameter tidak kurang dari 10 mm. Tulangan punter harus dipasang melebihi jarak minimal (bt + d).

PresentaseTulangan

15

Persentase tulangan seimbang ($\rho_{balance}$)

Untuk setiap kombinasi f'c dan fy terdapat rasio tulangan dalam kombinasi yang seimbang. Persentase tulangan seimbang ini dapat dilihat dalam bentuk persamaan seperti di bawah ini:

$$\rho_{balance} = \frac{0.85.f'c.\beta}{fy} \cdot \frac{600}{600 + fy} \tag{1}$$

Dimana:

 $\rho_{balance}$ = Persentase tulangan seimbang

f'c = Mutu beton

fy = Mutu baja tulangan

 $\beta = 0.85$

Persentase Tulangan Minimum (ρ_{min})

Persentase tulangan minimum ini dapat dilihat dalam bentuk persamaan seperti di bawah ini :

$$\rho_{\min} = \frac{1.4}{fy} \tag{2}$$

Persentase tulangan maksimum (ρ_{max})

Dengan mempertahankan rasio tulangan yang lebih rendah dari pmaks akan menghasilkan struktur berkapasitas deformasi yang cukup. Atas dasar ini, pada SNI - 03 - 2847 - 2002 Pasal 3.3.3-3, menentukan agar tetap memakai $\rho_{max}=0{,}75$ pb terhadap lentur murni.

Perencanaan Elemen Struktur Perencanaan pelat

Lantai merupakan bagian struktur yang menerima beban mati dan beban hidup di mana beban-beban tersebut didistribusikan ke balok-balok. Bagian-bagian tersebut akan menerima beban sebesar luasan bagian ber bentuk amplop.

Perencanaan balok dan kolom

Perencanaan tulangan:

$$\frac{Mu}{b \cdot d^2} = \Phi \cdot \rho \cdot fy \cdot (1 - 0.588 \cdot \rho \cdot \frac{fy}{f/c}) (3)$$

Menghitung tulangan geser:

As_{sengkang} min =
$$\frac{b \cdot y}{3. \text{ fy}}$$
 (4)

Menghitung jumlah tulangan:

$$n = \frac{As}{\frac{1}{4} \cdot \pi \cdot d^2} \tag{5}$$

Menghitung jarak tulangan geser:

$$S = \frac{y}{n+1} \tag{6}$$

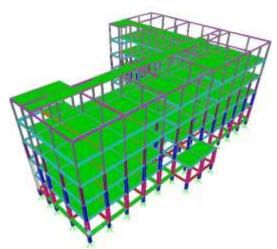
METODOLOGI PENELITIAN

Metode dalam penelitian ini ditampilkan dalam Tabel 4.

Tabel 4. Langkah penelitian

	Tabel 4. Langkah penelitian						
No	Uraian Kegiatan						
1	Menghitung pembebanan pada						
	struktur gedung (bebanmati, hidup,						
	angin).						
2	Memasukkan model struktur						
	gedung dalam SAP 2000 versi 14.						
3	Menentukan tumpuan pada						
	struktur.						
4	Memasukkan jenis-jenis beban						
	yang akan digunakan pada						
	perhitungan struktur (beban hidup,						
	beban mati,dan beban angin).						
5	Memasukkan jenis-jenis material						
	yang akan digunakan pada						
	perhitungan struktur (beton dan						
	baja tulangan).						
6	Memasukkan ukuran penampang						
	elemen struktur yang digunakan						
	(balok dan kolom).						
7	Membuat Frame atau elemen						
	struktur (balok, dan kolom).						
8	Memasukkan hasil perhitungan						
	pembebanan ke dalam struktur.						
9	Memulai analisis struktur.						
10	Mendapatkan hasil analisis berupa						
	deformasi, reaksi perletakan,						
	momen, gaya lintang, dan gaya						
	normal,						
11	Mengecek keamanan, apabila aman						
	dapat melakukan perhitungan						
	tulangan.						

HASIL DAN PEMBAHASAN


Perhitungan struktur dimulai dari perhitungan pembebanan. Analisa struktur dilakukan dengan bantuan aplikasi SAP 2000 versi 14. Setelah diketahui gaya-gaya dalam yang terjadi pada struktur, maka dapat diketahui kondisi tegangan. Kemudian dapat dilakukan perhitungan penulangan pelat lantai, perhitungan penulangan balok disertai

perhitungan penulangan geser, perhitungan penulangan kolom disertai perhitungan penulangan geser, dan menggambar detail tulangannya.

Pembebanan

Pemodelan struktur pada bangunan SD Muhammadiyah I Samarinda ditunjukkan seperti pada Gambar 1.

Gambar 1. Permodelan struktur gedung

Beban mati

Data-data pembebanan sesuai dengan Peraturan Pembebanan Indonesia (PPIUG) 1983. Beban mati ditampilkan dalam Tabel 4.

Tabel 4. Berat sendiri bahan bangunan kompenen gedung

Beban	Berat(kg/m³)
Berat sendiri baja	7850
Berat sendiri beton	2200
Berat sendiri beton bertulang	2400
Berat adukan dari semen, per cm tebal	21
Berat dinding pasangan bata merah 1/2 batu	250
Berat dinding pasangan bata merah 1 batu	450
Berat penutup lantai (keramik/marmer/granit)	24
Berat langit - langit (plafon, gypsum)	11
Berat penggantung langit – langit	7
Berat muatan hidup lantai kantor,sekolah	250
Berat muatan hidup beban	100

manusia	
Berat ornamen (finishing)	20
Berat muatan hidup lantai ruang serbaguna	400
Berat sendiri penutup atap	50
Dinding Pasangan Bata 1/2 bata	250
Berat dinding partisi (dengan rangka)	50

Untuk berat sendiri elemen balok/kolom sudah dihitung pada aplikasi SAP 2000 versi 14 jadi tidak hitung pembebanannya sebagai akibat beban mati. Pembebanan pada *roof tank*, lantai 4, lantai 3, dan lantai 2 ditampilkan dalam Tabel 5.

Tabel 5. Pembebanan pada *roof tank*, lantai 4, lantai 3, dan lantai 2

Berat adukan per cm tebal 4 cm x 21	=	84kg/m ²
tebai 4 cili x 21		
Berat keramik per cm	=	48 kg/m^2
tebal 2 cm x 24		
Berat langit-langit		11 kg/m ²
(plafond)		
Berat penggantung	_	7 kg/m^2
langit-langit	ı	
DL	=	150 kg/m^2

Beban hidup

Sesuai dengan PPIUG 1998, berat muatan hidup lantai sekolah = 250 kg/m²

Perhitungan Pelat Lantai

Pelat lantai 1 yang ditinjau ditunjukkan pada Gambar 2.

Diketahui: DL =349,5 kg/m² LL = 250 kN/m²

Kombinasi pembebanan

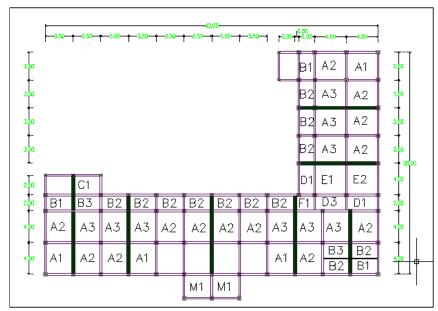
 $Q_u = w_u = 1.2 DL + 1.6 LL$ = 819.4 kg/m²

Mencari x untuk momen-momen

 $x = l_y / l_x$ = 400 / 350 = 1,14 \le 3 (pelat dua arah)

Skema yang di pakai jenis skema II dari tabel momen per meter lebar.

Interpolasi angka skema pelat lantai


 $\begin{array}{lll} \text{Interpolasi } (m_{lx}) & = 35,5 \\ \text{Interpolasi } (m_{Iy}) & = 28,5 \\ \text{Interpolasi } (m_{tix}) & = 76 \\ \text{Interpolasi } (m_{tiy}) & = 71 \\ \end{array}$

Menentukan momen-momen $m_{Ix} = 35633,7kg.cm$

 $m_{Iy} = 28603,7 \text{kg.cm}$

 $m_{tix} = 76286,1 \text{kg.cm}$ $m_{tiy} = 71267,3 \text{kg.cm}$

Gambar 2. Pelat lantai 1 yang ditinjau

Mencari ρ_{min} dan ρ_{max} :

$$\rho_{\text{min}} = \frac{1.4}{fy} = 0.00583$$

$$\rho_{\text{maks}} = \frac{75}{100} \cdot \rho_{\text{b}}$$

$$\rho_{\text{b}} = \frac{0.85 \cdot f'c \cdot \beta}{fy} \cdot \frac{600}{600 + fy} = 0.053$$

$$\rho_{\text{maks}} = \frac{75}{100} \cdot \rho_{\text{b}} = 0.0398$$

Menghitung tulangan

Tebal pelat (h) = 120 mmPenutup beton p = 20 mm

Diameter tulangan utama diperkirakan dalam arah $-x \mathcal{O}_d = 12 \text{ mm}$ dan dalam arah $-y \mathcal{O}_d = 12 \text{ mm}$

Tinggi efektif d dalam arah –x adalah :

$$d_x = h - p - \frac{1}{2} d$$

= 89 mm

Tinggi efektif d dalam arah –y adalah :

$$d_y = h - p - \emptyset_d - \frac{1}{2} d$$

= 77 mm

Mencari luas tulangan (As):

$$As = \rho_{min} \cdot b \cdot d$$

= 5,189cm²

Mencari jumlah tulangan (menggunakan Ø 12 mm)

$$n = \frac{As}{\frac{1}{4} \pi d^2} = \frac{5,189}{\frac{1}{4} \cdot 3,14 \cdot 1,2^2}$$

Tul. lapangan (arah X) Ø12 – 150mm Tul.lapangan (arah Y) Ø 12 – 150 mm , Tul. tumpuan (arah X) Ø 12 – 150 mm, Tul.tumpuan (arah Y) Ø 12 – 150 mm.

Penulangan pada pelat pada potongan A-A ditampilkan pada Gambar 3.

Perhitungan Balok

Balok yang ditinjau ditunjukkan pada Gambar 4.

Menghitung rasio tulangan

$$\frac{Mu}{b \cdot d^2} = \phi \cdot \rho \cdot fy (1 - 0.588 \cdot \rho \cdot \frac{fy}{frc})$$

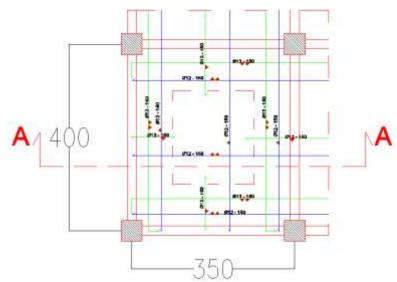
$$43.35 = 2560 \rho - 19267.58 \rho^2$$

$$19267.58 \rho^2 - 2560 \rho + 43.35 = 0$$
(menggunakan rumus abc)
$$\rho = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

$$-0.0199$$

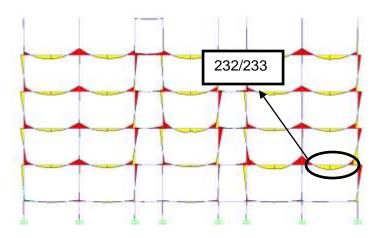
Cek $\rho_{min} < \rho < \rho_{maks} = 0,044 < 0,0199 < 0,0276$ (maka dipakai ρ).

Mencari luas tulangan (As)


$$As = \rho \cdot b \cdot d$$

= 13,625 cm²

Mencari jumlah tulangan (n)


$$n = \frac{1}{4} \frac{\pi}{\pi} \frac{d^2}{d^2} = 6,77 \longrightarrow 7 \text{ buah}$$

18

Gambar 3. Penulangan Pelat pada Potongan A-A

Gambar 4. Balok yang ditinjau

Cek penampang tulangan

 Tulangan pokok 3.1,6 = 4,8 cm

 Spasi (3-1). 2,5
 = 5,0 cm

 Begel 2.1.0 = 2,0 cm

 Penutup beton 2.4 = 8,0 cm +

 Lebar balok (20 cm)
 >19,8 cm

 Penempatan tulangan 19,8 < 20 Ok.

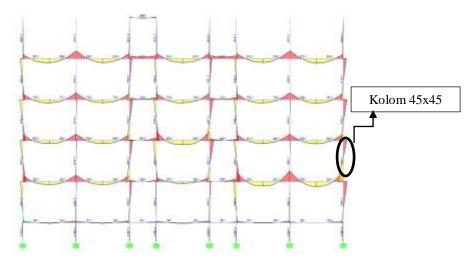
Pemeriksaan

 $\begin{aligned} As &= n \text{ . luas tulangan utama} \\ &= 7 \text{ . } {}^{1}\!\!/_{\!\!4}. \text{ . } \pi \text{ . } D^{2} \end{aligned}$

 $= 14,067 \text{ cm}^2$

Syarat (ϕ Mn > Mu)

Mn = As . fy (d - (a/2)) = 13,63 . 3200 (34,20 - (10,258/2)) = 1046896 kg.cm


φ Mn > Mu = 10414029 > 1014029, Aman. Tul. geser Ø 12 - 150 mm (tumpuan) Tul.geser Ø 12 - 300 mm (lapangan) Tabel 6. Penulangan Balok

Type Balok	Tumpuan	Lapangan
B2 20 x 40	40	40
Tul. Atas	7 D16	2 D16
Tul. Bawah	3 D16	3 D16
Tul. Tengah	2 Ø 10	2Ø10
Tul. Geser	Ø 10 - 150	Ø 10 - 300

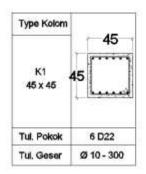
Perhitungan Kolom

Kolom yang ditinjau ditunjukkan pada Gambar 5.

Gambar 5. Kolom yang ditinjau

Mencari nilai as:

Mu =

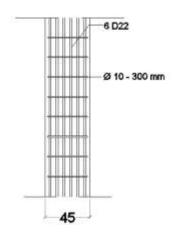

$$\phi$$
 As . fy (c - d') + 0,85. f' c. b. a (c -

$$0.5.a) + As.fy(d-c)$$

As
$$= 3,454 \text{ cm}^2$$

Mencari jumlah tulangan (menggunakan Ø 12 mm)

$$n = \frac{As}{\frac{1}{4} \pi d^2}$$


Mencari jarak tulangan (y = s)

$$jarak = \frac{s}{n+1}$$

$$= \frac{100}{2+1}$$

$$= 33 \text{ cm} \sim 30 \text{ cm}$$

Tulangan geser praktis Ø 12 -300 mm. Penulangan pada kolom ditunjukkan pada Gambar 6.

Gambar 6. Penulangan kolom

KESIMPULAN DAN SARAN

Kesimpulan

Dari hasil analisa struktur menggunakan aplikasi SAP 2000 versi 14 yang mengacu pada Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1987 dan SNI 03-2847-2002, maka diperoleh hasil gaya – gaya dalam dan kemudian dilakukan

perhitungan tulangan secara analitis, maka dapat diambil kesimpulan sebagai berikut :

1. Hasil perhitungan pembebanan pada pelat lantai 2 arah dengan nilai momen maksimum ditunjukkan pada Tabel 7 dan 8.

- 2. Hasil perhitungan penulangan dan momen maksimum pada balok ditunjukkan pada Tabel 9 dan 10.
- 3. Hasil perhitungan penulangan dan momen maksimum pada kolom ditunjukkan pada Tabel 11.

Tabel 7. Hasil perhitungan pembebanan pada pelat lantai 2 arah dengan nilai momen maksimum Lantai 1, 2, 3 dan 4

1, 2, 0 000 1										
			Tulangan yang digunakan					Beban Mati	Beban	
Kode		Momen	Ĭ	-	_	_			(Dead	Hidup (Live
Pelat			Diameter tulangan mm² per				Load)	Load)		
	Kg.cm		meter lebar pelat					(kg/m²)	(kg/m²)	
	Mlx	30614,83	Arah X	=	Ø	12	-	150		
A1	Mly	27603,54	Arah Y	=	Ø	12	-	200	349.5	250
AI	Mtx	63237,20	Arah X	=	Ø	12	-	150	349,3	230
	Mty	64742,84	Arah Y	=	Ø	12	-	150		

Tabel 8. Hasil perhitungan pembebanan pada pelat lantai 2 arah dengan nilai momen maksimum pelat dak

Kode Pelat	Momen Kg.cm		Tulangan yang digunakan Diameter tulangan mm² per meter lebar pelat			Beban Mati (Dead Load) (kg/m²)	Beban Hidup (Live Load) (kg/m²)			
	Mlx	17741,44	Arah X	=	Ø	12	-	150		
L1	Mly 9337,60 Arah Y		=	Ø	12	-	200	306	500	
LI	Mtx	31514,40	Arah X	=	Ø	12	-	150	300	300
	Mty	25444,96	Arah Y = ø 12 - 200							

Tabel 9. Hasil perhitungan penulangan dan momen maksimum pada balok *long section* (25 cm x 50 cm)

BALOK LONG SECTION										
Momen Vu Lapangan Tumpuan Tulangan Sengkag (mn										
Frame	Tumpuan	Lapangan	Vu	rapangan	Timmbrian	Tumpuan Lapangar			angan	
	kg.cm	kg.cm	kg	(buah)	(buah)	(mm)	(n	nm)	
259/260	1506087,32	864841,40	12051,20	5	8	Ø 10 -	150	Ø 10	- 300	

Tabel 10. Hasil perhitungan penulangan dan momen maksimum pada balok *cross section* (25 cm x 40 cm)

BALOK CROSS SECTION										
Frame	Momen Tumpuan	Momen Lapangan	Vu	Lapangan	Tumpuan	Tulangan Sengkag (mm)				
						Tumpuan	Lapangan			
	kg.cm	kg.cm	kg	(buah)	(buah)	(mm)	(mm)			
232/233	1014029,47	473967,72	8781,16	3	7	Ø 10 - 150	Ø 10 - 300			

PERHITUNGAN TULANGAN KOLOM												
Frame	Pu	Mu	n	Vu	Tulangan Sengkang (mm)							
	kg	kg.cm	buah	kg	Tumpuan			Lapangan				
KOLOM LANTAI 1 (45 x 45)												
297	129632,38	49403,24	6	215,31022	ø	12	-	150	ø	12	-	300
KOLOM LANTAI 2 (45 x 45)												
369	92554,05	48938,89	6	239,53915	ø	12	-	150	ø	12	-	300
KOLOM LANTAI 3 (40 x 40)												
439	64940,50	31130,22	5	166,96129	ø	12	-	150	ø	12	-	300
KOLOM LANTAI 4 (30 x 30)												
504	33231,33	20243,85	3	115,11015	Ø	12	-	150	ø	12	-	300
KOLOM LANTAI 5 (25 x 25)												
991	8336,07	12436,65	2	53,979019	ø	12	-	150	Ø	12	-	300

Tabel 11. Hasil perhitungan penulangan dan momen maksimum pada kolom

KESIMPULAN DAN SARAN

Kesimpulan

Dari perhitungan yang dilakukan diperoleh beberapa kesimpulan, yaitu:

- 1. Gaya gaya yang mempengaruhi struktur dermaga:
- Gaya benturan kapal = 0,429 ton meter
- Gaya akibat angin = 0,202 ton
- Gaya akibat arus = 118,6219 ton
- Gaya akibat rem = 72,5 ton
- Gaya tarik *bollard* = 18,823 ton

2. Perhitungan fender

Tipe fender yang akan digunakan adalah fender karet silindris FR 3 dengan nilai energi yang dapat diserap adalah 0,429 tonm/m dan beban yang diteruskan ke dermaga adalah 8 ton/m. Dengan berat fender 45 kg/m. Jarak antar fender adalah 13 m dan menggunakan 1 buah fender silindris FR 3 untuk daerah yang ditinjau.

- 3. Beban yang bekerja pada struktur dermaga
- a. Berat beban mati $=1,127 \text{ ton/m}^2$
- b. Berat beban hidup= 47,038 ton/m²
- c. Hasil analisa output SAP 2000:
- Beban vertikal terpusat= 652,2195 t
- Momen searah sumbu x = -371,31128 tm
- Momen searah sumbu = 344,47495 tm
- Gaya *horizontal* searah sumbu x = 73.9294 ton
- Gaya *horizontal* searah sumbu y = -73,9294 ton

4. Kapasitas dukung tiang pancang

Kapasitas dukung tiang pancang berdasarkan metode *Meyerhof* 1976 pada BH-03 pada kedalaman 40 m sebesar 711,772 kN. nilai kapasitas dukung ijin satu tiang dalam kelompok sebesar 303,226 kN > dari beban maksimum yang dipikul oleh 1 tiang sebesar 106,181 kN (**AMAN**).

- 5. Beban yang dipikul masing-masing tiang pancang
- Beban vertikal yang dipikul oleh tiang vertikal = 106,181 kN
- Beban vertikal yang dipikul oleh tiang miring = 108.835 kN
- Beban horisontal yang dipikul oleh tiang miring = 2,654 kN

6. Beban lateral pada tiang pancang

Berdasarkan hasil perhitungan SAP beban lateral yang terjadi padi tiang pancang sebesar 73,93 kN yang dibagi dengan banyaknya tiang miring yakni 4, maka beban lateral yang diterima oleh masing-masing tiang miring 18,48kN < dari nilai tahanan lateral tiang sebesar 44,43 kN sehingga stuktur tersebut aman.

Saran

- 1. Sebaiknya menggunakan *fender* dibagian depan dermaga, karena bagian depan dermaga sangat besar menerima beban dari kapal yang sandar.
- 2. Jarak antar tiang pancang harus mengikuti aturan yang berlaku, selain

- untuk menambah kekuatan dari kapasitas dukung kelompok tiang juga memudahkan proses pekerjaan di lapangan.
- 3. Apabila nilai beban terlalu besar sehingga tidak akan mampu ditahan oleh tiang maka langkah yang diambil ialah;
 - a. Memperbanyak jumlah tiang;
 - b. Untuk beban horizontal tiang dibuat miring;
 - c. Pembesaran dimensi pada struktur tiang
- 4. Sebaiknya pada saat hendak menghitung kemampuan tiang pancang dermaga, dimiliki data-data lengkap seperti data spesifikasi kapal yang berlabuh, data laboratorium hasil uji tanah, data pembebanan yang berada di dermaga dan gambar *master plan* dermaga.

DAFTAR PUSTAKA

- Asiyanto, 2008. *Metode Kostruksi Bangunan Pelabuhan*, Universitas
 Indonesia Press, Jakarta.
- Hardiyatmo, H.C., 2011. *Analisis dan Perancangan Fondasi II*. Gadjah Mada University Press. Yogyakarta.
- ITS Press., 2009. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03-2847-2002). Surabaya.
- Kramadibrata, S., 2002. *Perencanaan Pelabuhan*, ITB, Bandung.
- Pusat Penelitian dan Pengembangan Teknologi Pemukiman, 2002. Standar Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung (SNI 03-1726-2002). Bandung.
- Sosrodarsono, dkk, 2000. *Mekanika Tanah* dan Teknik Pondasi, PT Pradnya Paramit. Jakarta.
- Sunggono, 2002. *Buku Teknik Sipil*. Penerbit Nova. Bandung.

Triatmodjo, B., 2009. *Perencanaan Pelabuhan*. Beta Offset. Yogyakarta.